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Description of Progress: 

Pattern Trees and Component-Learning 

As part of our goal for automating pattern tree learning, we have tested 
whether a network can be trained to discover a single salient component which 
discriminates targets from non-targets (we have previously called this "feature 
discovery"). Note that this is in contrast to a network which is trained to 
discriminate target from non-target based on any part of the image of the target. For 
this test we use the error function 

e„(w) = min(-log(.y(*, w))) 
*ep •     - - ■ (EQ1) 

where P indexes the particular positive example, y is the network output, and w is 
the parameter vector of the network. This error function is minimized over a set of 
positive and negative examples (i.e. targets and non-targets). For negative examples, 
we divide the non-target regions of the images into parts (squares, except for those 
which would overlap a positive example, in which case that portion is removed) 
whose size is the median linear extent of the targets. We consider each such region 
to be a negative example, and use the average cross-entropy error (-log(l-y(f,w))) 
for the example's contribution to the total error. We have used this objective 
function with the building-detection problem, the problem of finding 
microcalcifications in mammograms (see below), and aircraft detection. In all cases 
the resulting network detects only part of the target, however, its output is usually 
very close to one at those examples that it detects, even the false positives, indicating 
that it is not a good estimate of the probability that a target is present (i.e. the 
network seems to instantiate a binary decision). This should not be a problem, since 
we intend to use the output of this network (or a function of it) as an input, 
representing a meta-feature, to a network which will be embedded in the pattern 
tree representation. 

Learning several components 

For the building-detection problem, we trained a second network to find a 
different salient component than the first. Simply not training the second network 
on those regions which were detected by the first did not seem to work; the second 
network was similar to the first and responded wherever the first network 
responded. A second approach we tried was to use regions classified as targets by the 
first network as additional negative examples for the second network. This 
approach worked much better, with the second network detecting different locations 
than the first. 

Applications to Biomedical Imagery (Mammograms) 

We have applied the neural network /pyramid architecture to the detection of 
microcalcifications in mammograms (mammogram data provided by Dr. Robert 
Nishikawa of The University of Chicago). To date, we have trained networks on the 
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third and second pyramid levels, i.e., at one-sixteenth and one-eighth of the original 
resolution, using the same oriented energy features as used for the building- 
detection problem. We compared a non-hierarchical network architecture with our 
hierarchical detector constructed with two networks, and found that the hierarchical 
detector performs significantly better. The inputs to the non-hierarchical detector's 
network were the oriented energies from the zero-th through the third pyramid 
levels, which are the highest four octaves in the spectrum below the Nyquist 
frequency. The inputs to the hierarchical detector's second-level network were 
oriented energies from the zero-th through the second levels (the highest three 
octaves), plus the outputs of the four hidden units of the level-three network. 
Thus, the two detectors had the same number of inputs, at the second level. The 
superior performance of the hierarchical detector is in contrast to the building 
detector, in which the hierarchical and non-hierarchical detectors had essentially 
equal performance. One possible explanation is that the hidden units in the 
building detector network were simply passing information through to higher 
resolution, without performing any processing needed by the high-resolution 
network. The hidden units of the third-level net in the microcalcification detector, 
however, processed information in a way that was useful to the higher-resolution 
network.1 

Training neural networks with uncertain target positions 

A curious side-issue of the microcalcification problem arose when we noticed 
that the coordinates given for the microcalcifications frequently did not match their 
apparent positions in the mammograms. Although this needs to be addressed by 
the radiologists who provide the data, it raises the interesting problem of how we 
should train a network in such circumstances. We developed two possible objective 
functions for this problem, with the usual argument for the cross-entropy error 
function as a model. This argument interprets the output of the network as the 
probability that a target is present, conditioned on the input vector. If this 
probability indicates that the input vector is a positive example, then minimizing 
the cross-entropy error gives the network that is maximally likely to produce the 
desired outputs in the training data, given the input vectors. 

In the first approach the network is trained so that it is maximally likely to 
produce the correct output, i.e., a positive response at each of the target positions 
and a negative response elsewhere. However we don't know the correct target 
positions and so must average over them.  This gives the error function 

*=- 2 l0s(r§U -2X1-*'«» (EQ2, 
iePosiaves \x     S\v i>\ ff.       Allx v   X    / 

1 The research on mammography was largely funded by The Murray Foundation. Follow-up 
funding under the auspices of the National Information Display Laboratory (NIDL), for which Sarnoff 
is the host institution, has been approved, but has not yet started. 
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Invited talk at ONR Sensor Fusion Workshop at Woods Hole 

Invited talk entitled "Combining Neural Models and Feature Pyramids for 
Sensory Fusion". 

Congressional Exposition "New Frontiers in Breast Cancer Research" 

Presented neural network/pyramid architecture at Congressional exposition 
entitled "New Frontiers in Breast Cancer Research". The material presented 
illustrated the dual-use application of our NN/PYR architecture (ATR and 
mammography). Our work received wide media coverage with write-ups in the 
Wall Street Journal, and coverage on "CBS This Morning." 

Summary of Substantive Information Derived from Special Events: 

At the ARPA Image Understanding workshop, we spoke with Thomas 
Purcell of Booz-Allen Hamilton, who works with NPIC. They are in the definition 
stage for a program called BEACON which is to identify and transfer technology 
which will support their image analysts' needs. 

Problems Encountered and/or Anticipated: 
None 

Action Required by the Government: 
The most recently scheduled funding increment has not occurred. 

Financial Status 

1. Amount currently provided on contract: 

2. Expenditures and commitments to date: 

3. Funds required to complete work: 

$225,740 

$251,624 
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in which f(x) is the input feature vector at position x, y(f) is the network output 
given f, a, is the probability over positions of finding the f-th positive example, and 
(...)a indicates an average over positions, weighted by nr The derivation of this 

equation assumes that the distributions TT,. do not overlap each other. A more 
general equation which allows for overlapping distributions can be derived, but its 
use is less convenient.2 

In the second approach, we want to train the net so that it is maximally likely 
to produce at least one positive response within each positive region, and a negative 
response at all locations outside of the positive regions. Two key differences 
between the two approaches are (1) we do not use probabilities over positions and (2) 
though overlaps are possible, they do not affect the error function's form. The 
resulting error function is 

(EQ3) E=- £ iog(i-j(fw))- x log i-n^-^w)) 
xeNegatives i'ePositives |_ xe> 

We trained networks using EQs 1 and 3 on the microcalcification problem. 
ROC curves indicate that network accuracy is similar for the different error 
functions. However, those trained using EQ 3 had outputs which are more 
consistent with the conditional probability interpretation. Specifically, the 
performance is not very good at low resolution, and one would expect the detection 
probability to be near zero, since the network should never be very certain that a 
microcalcification is present, and the a priori probability is very low. The network 
trained using EQ 3 produced low ouputs, whereas the network trained using EQ 1 
had an output near 1 for many examples, including many false positives. 

IU Workshop Paper Presented: 

We presented the Image Understanding workshop paper entitled, "Neural 
Network/Pyramid Architectures That Learn Target Context", at the November 1994 
Image Understanding Workshop (see attachment to the last quarterly report). 

NIPS Poster Presented 

Poster presentation entitled "Coarse-to-Fine Image Search Using Neural 
Networks" at the Neural Information Processing Systems Conference in Denver, 
CO, on November 30. We will write a paper for the proceedings. 

Talk Presented at NIPS Workshop on Neural Networks in Medicine 

Invited talk entitled "A Dual-use Neural Network /Pyramid Architecture for 
Learning Image Context in Mammography". 

2Unfortunately, overlapping distributions are very common, especially in low-resolution images. 
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